

Dr. Endric Schubert, Univ. Ulm & Missing Link Electronics Andreas Braun, Missing Link Electronics Ulrich Langenbach, Fraunhofer HHI

We are

a Silicon Valley based technology company with Offices in Germany. We are Partner of leading electronic device and solution providers and have been enabling key innovators in the automotive, industrial, test & measurement markets to build better Embedded Systems, faster.

Our Mission is

To develop and market technology solutions for Embedded Systems Realization via pre-validated IP and expert application support, and to combine off-the-shelf FPGA devices with Open-Source Software for dependable, configurable Embedded System platforms

Our Expertise is

I/O connectivity and Acceleration of data communication protocols, additionally opening up FPGA technology for analog applications, and the integration and optimization of Open Source Linux and Android software stacks on modern extensible processing architectures.

PCIe to Ethernet Throughput Matching

PCI Express

- PCIe replaces the PCI Local Bus (backwards compatible)
- Full-duplex serial transmission
- At 8GT/s line rate (Gen3) on up to 32 lanes
- Packet-based protocol with four layers

Application	Transaction Layer Packet (TLP)										
Transaction											
Data Link	Start	Seq.	Header	Payload	ECRC	LCRC					
Physical	4 B	2 B	12/16 B	128/256 B	4 B	4 B					

PCIe Layer

- Data Link layer, physical layer: Reliable transport on the link
- Transaction layer:
 - Transport of application data, device configuration, interrupts, Quality of service
 - TLP categories: Memory, I/O, configuration, message

(c) 2016 MLEcorp.com

EW2016-Session18-MLE-PCIeOverIP

PCI Express

• PCIe is point-to-point. Hierarchical system topologies via switches

- ID based routing (bus/device/function number) and address based routing
- Transactions require completion (split-transaction) or posted transactions possible

PCI Express

- PCI Local Bus from software view (addressing, driver, configuration, ...)
- PCIe devices implement a set of registers (configuration space)
- PCIe topology needs to be explored at the beginning of system start-up

Bus₃

Enumeration of devices by completing Configuration-TLPs

Range problem: Physical line length of PCIe on PCBs is limited to the centimeter range

(c) 2016 MLEcorp.com

State-of-the-art

PCIe external cabling:

Standard for copper cables

InfiniBand:

Standard HPC interconnect

ExpEther:

PCIe Gen2 over 10GbE networks by NEC.

(c) 2016 MLEcorp.com

EW2016-Session18-MLE-PCIeOverIP

 10 GigE will soon push from data center into embedded markets

Transporting 1 bit per second needs 1 Hz

- 1 GigE → 1 CPU at 1 GHz
- 10 GigE → 4 CPUs at 2.5 GHz

Network Processing

SoC FPGA as (yet) another computer

	Intel i7-4770	Xilinx Zynq 7045
Compute	~100 GFLOPS	5 GFLOPS (PS) 778 GFLOPS (PL)
TDP	84 W	<20 W (typ)

SOC FPGA has 4x more compute With ¼ the power dissipation!

[http://www.xilinx.com/products/technology/dsp.html]

Network Protocol Acceleration Platform Architecture

PCIe over IP

Concept of PCIe-over-IP

•••• Distributed PCIe Switch based on "XPressRICH3" PCIe IP Core from PLDA

Setup

TLP aggregation

00000000	02	00	00	00	00	11	02	00	00	00	00	55	08	00	45	30
00000010	05	c8	9a	fa	40	00	ff	06	56	e6	c 0	a8	01	69	c0	a8
00000020	01	65	ca	05	ca	06	fc	5a	b4	d2	b5	45	28	44	50	18
00000030	01	e0	d3	79	00	00	60	00	00	40	03	00	00	ff	00	00
00000040	00	02	11	с7	4a	00	4b	05	c1	18	50	32	37	45	a9	a0
00000050	72	80	e9	d9	cb	1d	15	d4	b9	df	03	bb	23	05	82	ba
<>																
00000130	67	07	92	e3	c1	10	b7	7b	0d	52	be	38	c8	1c	76	2f
00000140	66	0c	11	de	7a	07	00	00	00	00	00	00	00	00	00	00
00000150	00	00	00	00	00	00	60	00	00	40	03	00	00	ff	00	00
00000160	00	02	11	с7	4b	00	ee	c5	d1	09	8f	d5	a0	18	bd	38
00000170	43	fe	с8	95	4e	1e	17	e7	69	83	97	53	d0	1a	e2	bc
<>																
00000250	2d	05	34	2c	53	11	09	af	80	с4	ef	62	96	0b	e1	95
00000260	0b	a1	1d	ea	f9	0a	00	00	00	00	00	00	00	00	00	00
00000270	00	00	00	00	00	00	60	00	00	40	03	00	00	ff	00	00
00000280	00	02	11	с7	4c	00	c0	4c	91	a1	94	95	06	6c	98	29
00000290	d2	ed	e9	81	f6	0b	33	45	ee	28	54	d9	b1	1d	a6	48
<>																
00000370	42	21	a5	50	70	00	36	47	4d	87	73	79	35	16	e6	a8
00000380	4e	cd	87	eb	06	03	00	00	00	00	00	00	00	00	00	00
00000390	00	00	00	00	00	00	60	00	00	40	03	00	00	ff	00	00
000003a0	00	02	11	с7	4d	00	1c	d5	36	a5	c9	f6	66	07	a3	da
000003b0	18	са	3d	0c	4c	02	54	9b	f1	4b	7b	9c	df	07	6a	33
<>																
00000490	c2	60	fc	7e	71	15	e6	4e	7d	50	7e	ff	29	10	dc	a9
000004a0	9c	22	b1	17	10	09	00	00	00	00	00	00	00	00	00	00
000004b0	00	00	00	00	00	00	60	00	00	40	03	00	00	ff	00	00
000004c0	00	02	11	с7	4e	00	a6	9c	59	4e	c3	d3	45	4c	94	33
000004d0	78	9b	4b	13	b1	16	72	06	a5	59	ad	54	3c	0d	ce	a0
<>																
000005b0	25	09	84	6a	3f	17	02	a2	1b	f9	bd	e8	a3	01	40	74
000005c0	22	ee	89	80	63	01	00	00	00	00	00	00	00	00	00	00
000005d0	00	00	00	00	00	00										

Legende:

Ethernet II Header [0000-0005] Dst. MAC: (02 00 00 00 00 11) → 02:00:00:00:0111 [0006-0011] Src. MAC: (02 00 00 00 00 55) → 02:00:00:00:00:55 Internet Protocol Header [0017] Protocol: $(06) \rightarrow TCP$ [001a-001d] Src. IP: (c0 a8 01 69) → 192.168.1.105 [001e-0021] Dst. IP: (c0 a8 01 65) → 192.168.1.101 Transmission Control Protocol Header [0022-0023] Src. Port: (ca 05) → 51717 [0024-0025] Dst. Port: (ca 06) → 51718 PCIe TLP Header [0036] FMT/Type: (60) \rightarrow 64-bit Memory Write Request [0038-0039] Length: (00 40) → 64 Doublewords (32-bit) → 256 Byte [003a-003b] Requester ID: (03 00) → 03:0.0 [003e-0045] Address1: (00 00 00 02 11 c7 4a 00) [015e-0165] Address2: (00 00 00 02 11 c7 4b 00) [027e-0285] Address3: (00 00 00 02 11 c7 4c 00) [039e-03a5] Address4: (00 00 00 02 11 c7 4d 00) [04be-04c5] Address4: (00 00 00 02 11 c7 4e 00) Data

Padding

(c) 2016 MLEcorp.com

EW2016-Session18-MLE-PCIeOverIP

Conclusion

- Reliable "tunneling" of PCI Express via TCP/IP
- Fully transparent to PCIe Root Complex and Operating System
- FPGA processing enables bandwidth at 10 GigE line rates

Based on "XPressRICH3" PCIe IP Core from PLDA

Please visit us at the show:

Xilinx – Hall 1 Booth 1-205