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Abstract
Many embedded systems demand for software and hardware co-processing, Digital Signal Processing for signal condi-
tioning, for example. Adding an FPGA as a companion chip to a modern CPU is an established concept for hardware
software co-processing. This is reflected in architectures like GENIVI, the Intel E6x5c architecture, etc. Key is an effi-
cient communicating link between the CPU and the circuitry inside the FPGA. Today’s high speed serial interconnect can
deliver high bandwidth. But latency requirements must also be met. We present metrics and experimental results to guide
embedded system engineers during system architecture design and implementation. Our experiments were performed on
exemplary embedded platforms combining Intel Atom CPU with modern FPGA.

1 Introduction
Configurable Systems provide advantageous architecture solutions to meet cost and performance requirements in certain
embedded applications. Whenever a rich software stack has to be run in combination with a variety of standard and
non-standard IO, for example in so-called Cyber-Physical Systems [Lee08], a powerfull CPU must be augmented by
programmable logic (FIG. 1).

Field-Programmable Gate-Arrays (FPGAs) are the foundation technology behind these Configurable Systems - they
offer additional degrees of freedom for cost and performance optimizations, the flexibility to perform changes throughout
the product’s life cycle and can protect from device obsolescence. The ability to connect FPGAs as companion chips
to microprocessors basically opens the world of building your own Application Specific Standard Processor (ASSP) to
embedded systems designers. These Configurable Systems offer many advantages:

First, they provide flexibility to implement that particular special-purpose I/O connectivity that a microprocessor
and/or micro-controller may not have. For example, certain automotive and/or industrial I/O such as CAN, FlexRay,
MOST, SerCos, Profibus, Ethercat, etc are typically not provided by many general purpose processors but can easily be
implemented in an FPGA companion chip - an aspect which is illustrated by the GENIVI Alliance’s computing platform
or the Intel Industrial Control Reference Design [Int09]. Using Sigma-Delta converters, FPGAs can even be used to
provide integrated analog-to-digital or digital-to-analog connectivity [SRZ10] to an embedded system.

Second, the FPGA’s compute fabric offers powerful means for parallel processing [Sea10] and digital signal process-
ing, as it is, for example, required by video image stream processing in automotive driver assist systems and in machine
visioning applications. Also, parallel processing in the FPGA fabric sometimes is more advantageous for implementing
real-time behavior compared to software running in a Real-time Operating System (RTOS) [SS11].

This makes system implementation more efficient and allows to scale a platform’s compute performance with the
application’s needs.

However, to meet the cost/performance target it is important to pick the right partitioning between what’s processed
in software in the CPU and what goes into custom co-processing inside the programmable hardware. Key to such Asym-
metric Multi-Processing (AMP) architectures is an efficient link between the CPU and the FPGA, and in particular, the
bandwidth and latency that this link supports. The choices for this link depend on the CPU device: PowerPC has the
Processor Local Bus (PLB) or the Auxiliary Processing Unit (APU), Texas Instrument’s OMAP has the Chip-to-Chip
(C2C), ARM offers the Advanced eXtensible Interface (AXI), and Intel comes with Peripheral Component Interconnect
Express (PCIe).

Intel Architecture (IA) comes in a wide variety of device offerings, ranging from low-power ATOM CPUs up to
high-performance Core i7. A significant advantage is the broad software, operating system and development toolchain
ecosystem.
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Figure 1: Configurable Systems Architecture

PCIe was introduced in 2004 by the Intel Corporation to replace the older PCI and AGP standards. The theoretical
bandwidth of a single-lane PCIe connect in version 1.1 is 250 MB/sec. Today, it is not only ubiquitous in personal
computers but it is also an important choice for compute intensive embedded systems.

While in the “old days” of PCI a special PCI chipset was needed for connectivity, most of today’s FPGA devices
have dedicated, built-in hard macros for PCIe connectivity. Some FPGAs even have dedicated PCIe endpoints such as
the Altera Arria II GX, Arria V, and Stratix V devices or the Xilinx Virtex-5, Virtex-6, and Virtex-7 devices. As a result,
the design challenges have moved from hardware printed circuit board design to finding the proper system architecture in
the FPGA and in developing the software infrastructure for PCIe connectivity between the microprocessor and the FPGA
companion.

This technical paper discusses results of a quantitative analysis of different AMP architectures when a high-speed
serialized PCIe is used. The data points presented are a result of our joint research with the Institute of Microelectronics
at the University of Ulm, Germany [Rot10, San10] and shall give guidance for the “everyday” embedded system designer
when he builds his own Configurable System.

2 Technical Background
The use of companion FPGAs quickly leads to loosely-coupled or tightly-coupled AMP, notwithstanding, that the CPU
device itself may exhibit a multi-core Symmetric Multi-Processing (SMP) architecture with heterogeneous instances of
distributed memory blocks. Sometimes, depending on the application and the underlying hardware/software partitioning,
these memory blocks can be used as local memory, solely for use by one single CPU.

Sometimes, it is required that two or more CPUs exchange data via shared memory, which leads to so-called Non-
Uniform Memory Architectures (NUMA). The communication path between these CPUs and the memory blocks, and the
bandwidth and latency involved, greatly influence the overall systems behavior. Memory bandwidth is the rate at which
data can be read from or stored into a semiconductor memory by a CPU. It is usually expressed in units of bytes per
second. Memory latency is a measure of time delay experienced between requesting a memory read, or store, and the
moment the data is actually available, or stored in memory.

The growing gap between the performance of a CPU and the performance of memory has been a limiting factor on
processing performance, especially in embedded systems. When using FPGA technology this gap even more limits the
overall system performance, as the memory controllers typically are implemented in programmable logic and optimized
for resource cost instead of performance.

Our quantitative analysis shows that these metrics, especially for remote access to memory via PCIe, may limit a
Configurable System’s performance.

PCIe is a bit serial, asynchronous, packet-oriented, high-speed data link with low voltage differential signals. In



version v1.1 one single lane permits to send and receive data simultaneously with a bit rate of bphy = 2.5Gbit/s. In
version v2.0, the de-facto standard for embedded systems today, this bit rate is bphy = 5.0Gbit/s. In order to increase the
bandwidth, multiple PCIe lanes can be bundled in the power of two. Since every byte is recoded in 10 bits for transmit
(8bit/10bit) mencoding = 8/10, the overall symbol rate is braw = mencoding ·bphy = 250MB/s for PCIe v1.1 or 500MB/s for
PCIe 2.0, resp. The data is transmitted via a layered protocol within so called transaction layer packets (TLP). Thus, the
overhead for control data will reduce the total bandwidth compared to the theoretically possible symbol rate.

The overall bandwidth is heavily influenced by the used payload size. The PCIe specification allows a maximum
payload size (MPS) of up to lpayload = 4096B. For example, with a maximum payload size of lpayload = 128B and a
header size of lheader = 20B the packet efficiency is reduced to ηpacket = lpayload/(lpayload + lheader) = 0.86. With a bit
transfer rate of bphy = 2.5Gbit/s and 8bit/10bit encoding (mencoding) bandwidth is reduced to

bmax = bphy ·mencoding ·ηpacket = 215MB/s.

Another crucial point is the latency of the transmissions because it affects the entire system substantially. In particular,
this is very important for the responsiveness of real-time applications in closed loop scenarios. Due to the complex
interaction of multiple components (like memory controller or bus/link bridges) the overall latency cannot be easily
calculated by a formula. To calculate the round trip time / latency, we have to take into account the time needed to transfer
a single package.

The time to transfer a single TLP with a payload of 128B via a PCIe 1.1 is given by:

tT LP = (lpayload + lheader) ·
mencoding

bphy ·nlanes

Under the stated conditions, for a single lane, the tT LP is 592ns. The latency to transfer a single TLP improves when spread
across all available PCIe lanes. Bundled to 16 PCIe 1.1 lanes, the mentioned time decreases to 37ns. Additionally the
delays introduced by all intermediate switches have to be taken into account. Examinations have shown that the latency
of one switch usually ranges from 110ns to 150ns [Reg07].

3 Architecture Choices for HW/SW Co-Processing
Multiple choices exist for implementing Configurable Systems in FPGAs: First, the embedded CPU can be a hard CPU
core highly optimized for area and performance, for example like the PowerPC 440 inside the Xilinx Virtex-5FXT devices.
Or, it can be a soft CPU core, for example like the Xilinx MicroBlaze [Xil09b] or the Altera NIOS-II, both of which are
implemented by programmable gates and as such can go into almost any device of the corresponding FPGA vendor.
Obviously, a soft CPU core lacks performance over a hard CPU core.

Memory can either be implemented as external SRAM or external DRAM. Or, it can be implemented using device-
internal On-Chip-Memory (Altera speak) / BRAM (Xilinx speak). Depending on the FPGA device vendor choices exist
for the Memory Controller Unit (MCU), as well, and these choices are important for delivering a performance system: Be-
cause of the direct impact of the MCU on the overall system’s performance, it sometimes is justified to build a specialized,
optimized MCU in-house, or purchase one as an IP core from a 3rd party.

FIG. 2 shows the exemplary components we have used for our quantitative analysis: A mini-ITX board from Point-of-
View POV/ION and the Xilinx reference platform ML507, connected via a single PCIe v1.1 lane. Several FPGA design
variants have been implemented using the embedded FPGA CPU choices, memory choices and MCU choices available.

3.1 Exemplary Hardware Components
The POV/ION board features an Intel Atom 330 processor running at 1.6 GHz, an NVIDIA MCP79 chipset, 4GiB DDR2
RAM (PC2-5300) and one PCIe x16 1.1 slot. The Xilinx ML507 development kit features a Xilinx Virtex-5FX70T
FPGA and PCIe v1.1 single lane [Xil07]. This FPGA device has a PowerPC 440 as a hard CPU core plus soft CPU core
MicroBlaze [Xil09a, Xil09b].

Three FPGA design variants have been implemented. The first variant (PowerPC+MC) features a PowerPC 440
running at a clock frequency of 400MHz and a simple memory controller (MC) which connects DDR2 main memory
to the PowerPC’s builtin memory controller interface (MCI). The second variant (PowerPC+MPMC) is also based on
PowerPC 440, but the DDR2 main memory is connected via the vendor-provided multi-port memory controller (MPMC).
The MPMC connects up to eight independent interfaces and buses to a single memory. Both PowerPC 440 design variants
have a 128 bit wide PLB bus. The third variant (MicroBlaze) features the Xilinx MicroBlaze 7.20d which is configured
with a five-stage pipeline and a vendor-provided Memory Management Unit (MMU). The MicroBlaze’s cache is made
configurable in size up to 64 KiB. The PLB interface of the MicroBlaze is limited to a data width of 32 bit.
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Figure 2: Configurable System Building Blocks and Connectivity

Additionally to the memory controllers for the DDR2 main memory, all three design variants feature an external
memory controller for on-board SRAM and several BRAM controllers. All design variants have a PLB-to-PCIe bridge
and a vendor-provided Central DMA engine. Both PLB interfaces to the CDMA controller, PLB master and PLB slave,
are connected to the same PLB bus, where the PCIe bridge is connected also. Thus the CDMA controller can transfer data
across the PLB-to-PCIe bridge in both directions and can be used either by the FPGA or the ATOM CPU.

3.2 Exemplary Software Components
The performance analysis setups are based on the Linux operating system for each of the three processors, ATOM,
PowerPC 440, and MicroBlaze. While the processors inside the FPGA run a lightweight Linux V2.1 from Missing Link
Electronics, the ATOM CPU runs a fully featured Ubuntu 8.04LTS distribution.

Since user space applications run in virtual memory mode, they cannot access other memory regions. Therefore,
several kernel modules were developed to map certain memory locations to the user space. This also includes the distant
memory and the CDMA engine which both are connected via PCIe. The upper part of the MicroBlaze’s DDR2 main
memory is cut-off in order to establish shared, fast and unrestricted data exchange between other processors. This memory
region is used for DMA access because it is not restricted to Linux kernel page alignment.

Similar to the MicroBlaze’s Linux, a kernel module was developed for the ATOM CPU in order to map the PCIe
memory regions and allocate the DMA memory. The DMA memory address is written to the PLB-to-PCIe bridge so as
to enable the CPUs inside the FPGA to write into the main memory of the ATOM CPU, directly. In the kernel memory
management the maximum DMA buffer size is restricted to 2,048 pages at 4 KiB each. As interrupts are not available in
user space, the successful completion of a DMA transfer gets notified by polling a control register. In order not to block
the bus transfers unnecessarily the polling is only done in the last fraction of each transfer.

4 Quantitative Analysis Setup
The Open Source LMbench tool suite was used for latency and bandwidth measures. LMBench provides simple, portable
benchmarks in order to compare POSIX compliant Linux systems. Every benchmark test is run 100 times for each
configuration to increase accuracy and to get better statistics like variation, confidence intervals or quantiles. Jitters in
repeating single measurement results are discussed in terms of interquartile range (IQR) and minima and maxima.

To measure the latency of a memory read, the tool lat_mem_rd of said LMbench tool suite was used. Operating
on data only, instruction loads cannot be measured. The latency measurements use all caches and all main memories.
To obtain the size of the cache by means of latency, the size of the working set is varied. Since the memory hierarchy
prevents the detection of cache write-backs, there is no way to measure the latency of memory writes. The bandwidth is
also measured with said LMbench tool bw_mem; it is run in different modes to obtain measurements for read, write, copy
or other combined bandwidths.



To simulate high system load the tool stress was built and used. This tool continuously allocates memory and thus
causes high load in the memory system. It is run on each CPU which performs the transfer and is configured such that
one eighth of the total main memory is used only. This serves to mimic a more realistic setting.

The exemplary Configurable System was analyzed at several levels. Our experiments start from the inside of the
system involving only few components. Then the tests were widened consecutively in order to cover the entire system
performance. Each test analyzes certain aspects using certain distinct components. By comparing these tests, conclusions
can be drawn regarding the system components involved. Thus it is possible to obtain metrics for certain components that
can not be measured directly.

The Inner-Processor-System tests reflect the performance of a stand-alone processor system. It investigates how each
processor accesses its memory, and correlates to Paths 1-4 in FIG. 2. Tests regarding cache line size and prefetching were
performed first. After that, the focus was directed to the memory hierarchy performance covering latency and bandwidth,
additionally measured under high memory loads.

Memory accesses were cached to increase the performance. Operating on allocated memory which was obtained from
an operation system allowed us to additionally measure each cache’s performance. This gives an insight into how well
the different memory performance levels are covered by the memory hierarchy. These measurements reflect the way a
stand-alone processor performs. For industrial control systems, for example, it is of major interest to know both how long
it takes to read from the cache, and the cost of a cache miss. The overall system performance is heavily influenced by the
complex memory hierarchy and its parameters like the size of a cache line and the entire cache size.

The Inner-Board-System tests covered NUMA aspects. We investigated the way how shared memory or a memory
of an I/O controller is accessed with regards to latency and bandwidth. This correlates to Paths 5-7 in FIG. 2. Caching
schemes are by-passed when accesses to the memory locations are not part of the main memory. To obtain similar results
as with the native memory, the memory regions were mapped into user space. This scenario is similar to a supervisor
processor in an FPGA which communicates with real-time subsystems via mailboxes. The tests were performed once
again using the CDMA controller because of the special interest for data acquisition and transfers of large blocks of data.

The Cross-Board-System tests covered the way how distant memory is accessed when connected through a high-speed
serial link, which in our case was PCIe. The test correlates to the Paths 11-14 in FIG. 2. The data flow crosses from one
processing domain to the other. The requests on the synchronous parallel bus (PLB) have to be translated to requests on
the asynchronous serial link (PCIe). This scenario is closely related to the communication between a software partition
and a hardware partition of a heterogeneous AMP architecture. The performance of the PCIe link defines the behavior of
the overall system, such that with a high latency and a low bandwidth the system behaves like a loosely-coupled system.
This test aimed to check whether a closed loop system can be built including the communication delay of such a serial
link. Because the PLB-to-PCIe bridge does address translations from one address space to the other, the mechanism of
memory access is the same as for the local memory. Thus, the same benchmarks were used. Analog to the previously
described local memory test, this test was performed once again using the CDMA controller.

5 Quantitative Analysis Results
Three different CPUs and with multiple, different memory architectures were analyzed. While the results are exemplary,
they can serve as a guideline when building a Configurable System.

The most important aspect is the memory subsystem. Here the ATOM CPU clearly outperforms the FPGA-based
CPUs, due to the much higher effective bus clock rate of the ATOM CPU compared to the PowerPC 440 and the MicroB-
laze, despite the fact that the measured memory bandwidth of the ATOM CPU only reaches two thirds of the theoretical
bandwidth. Furthermore, the memory bandwidth of the PowerPC 440, the MicroBlaze and the CDMA seem to be limited
by the Processor Local Bus (PLB) and the FPGA-based memory controllers.

To mitigate such bottlenecks, usually an efficient caching strategy and cache hierarchy can be implemented. In both
aspects, the ATOM CPU shows higher performance compared to the smaller embedded cores. Thus, the L1 cache of the
PowerPC 440 and the MicroBlaze is, in terms of latency, somewhat comparable to the slower L2 cache of the ATOM
CPU. In addition, the very effective prefetching strategy, that speculatively loads other cache lines, is only implemented
by the ATOM CPU but not by the FPGA-based CPUs. The latter have been optimized for embedded applications in
preference of energy efficiency and heat consumption, over computational power.

Other memory subsystem related concerns are the inner-board transfers and the remote inter-board transfers. The per-
formance of local requests within the FPGA remain on a synchronous bus and are reasonably good. Thus, bus component
implementations inside the FPGA companion are fast, efficient and configurable in bandwidth concerns. This allows to
decide between resource usage, power consumption, clock rate and bandwidth. However, inter-board transfers, in our case
via PCIe, imposes latency and, therefore, the overall system’s performance drops, independent from which side initiates
the transfers and the used hardware. This is an interesting observation and not so obvious. For example, compared to the



local DDR2 RAM access, the latency of mapped memory crossing the PCIe v1.1 lane for the MicroBlaze is about 7 times
as high. The situation for the ATOM CPU to access the memories of the FPGA board, compared to its native memory is
even worse with a 18x latency increase.

To counteract this problem, it may not be sufficient to combine multiple PCIe lanes because this improves the band-
width but does not reduce the latency sufficiently. Furthermore, the bandwidth performance for PCIe reads is also low due
to the PCIe protocol itself. To investigate the reason for the latency and bandwidth decrease, a consumer PCIe graphics
card was attached to the ATOM CPU. With this configuration, the latency to access the GDDR2 memory of the graphics
card over a single PCIe lane was measured to be around 1000 ns. The ATOM CPU accessing the FPGA’s memory was
measured near by 2000 ns. Compared to the graphics card the latency is twice as high. Since the memories are similar, the
latency increase by approximately 1000 ns could only be introduced by the PCIe controller, the PLB-to-PCIe bridge and
additional PLB bus transfers inside the FPGA. Since the PCIe controller on the FPGA is a dedicated standard controller
and the local PLB bus transfers are sufficiently fast, only the PLB-to-PCIe bridge can be accountable for the latency in-
crease. Bandwidth concerns were also validated: With the reduction of the payload size for PCIe transfers introduced by
negotiations, the packet efficiency decreases and the bandwidth further drops. Thus accessing PCIe memory regions in a
word-wise manner, the packet efficiency drops to 17 percent and far more packets have to be transfered, each additionally
causing traffic. In all tests, PCIe mechanisms to increase the bandwidth e.g. packet queuing were not utilized.

Further investigations on this bridge have shown that the PCIe protocol translation is determining the behavior. To
avoid low bandwidth performance of read requests, PCIe writes should be preferred, whenever possible. Like local DMA
transfers above, in some situations a caching or bundling strategy for the PCIe mapped memory could be applied within
the PLB-to-PCIe bridge or the operating system.

The CDMA controller on the FPGA exhibited interesting behavior during inter-board communication: Read, write or
copy operations performed by a local soft-core or hard-core CPU are driven word-wise. Thus, several independent bus
requests are required in order to transfer several words in a row. The CDMA bundles these requests and performs them
in parallel as a block which additionally relieves the CPU. This is reflected in high transfer rates for copy operations.
Unfortunately, in our scenario the CDMA requires to access the bus twice, first to read the memory content from BRAM
etc. into its own FIFO buffer and, secondly, to commit this data to the PCIe bridge registers for the inter-board transfer.
Therefore this access pattern may completely block the memory subsystem by the CDMA controller.

This behavior is problematic because the PLB is then blocked. Thus, all PLB participants will not be able to com-
municate. Furthermore, the CDMA controller concurrently accesses the PLB for reads and writes in burst mode for a
large amount of clock cycles. However, the overall PCIe performance is far from reaching the theoretical bandwidth of
2.5 Gbit/s. If the CDMA would be integrated into the PCIe bridge the efficiency of DMA transfers likely improve.
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Figure 10: Latency over working set size for PCIe-mapped memory to ATOM CPU, a) idle mode and b) busy mode.
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Figure 11: Bandwidth over working set size on distant mapped memory, Atom 330, a) idle mode, b) busy mode.
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Figure 12: Latency over working set size for PCIe-mapped memory to MicroBlaze, busy mode.
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Figure 13: Bandwidth over block size for CDMA (48/16) copy from FPGA RAM to DDR2 RAM, Atom 330.


